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Abstract

A famous theorem of P. Novikov 1955 and W. W. Boone 1959 as-
serts the existence of a finitely presented group with unsolvable word
problem. In my Spring 2005 topics course (MATH 574, Topics in Mathe-
matical Logic), I presented Boone’s proof, as simplified by J. L. Britton,
1963. In this seminar I shall present a truly slick, streamlined proof, due
to S. Aanderaa and D. E. Cohen, 1980. Instead of Turing machines or
register machines, the Aanderaa-Cohen proof uses another kind of ma-
chines, called modular machines, which I shall discuss in detail. In addi-
tion, the Aanderaa-Cohen proof uses Britton’s Lemma. I shall omit the
proof of Britton’s Lemma, which can be found in my course notes [3] at
http://www.math.psu.edu/simpson/notes/.

We present the Aanderaa-Cohen [1] simplified proof of the unsolvability of
the word problem for finitely presented groups.

Like the original Boone-Britton proof, the Aanderaa-Cohen proof is based on
HNN extensions and Britton’s Lemma. The statement and proof of Britton’s
Lemma are in [3]. Here we mention some consequences of Britton’s Lemma
which we shall need.

Definition 1. Let G be any group, and let ¢, : H; &£ K;, ¢ € I, be a family of
isomorphisms between subgroups of G. Then the group

G = (G,pi,i € I|p; hpi=¢i(h),h € Hy,icI)

is called an HNN extension of G with stable letters p;,i € I. By Britton’s
Lemma, G C G'.

Definition 2. A good subgroup of G is a subgroup A C G such that ¢;(ANH;) =
ANK; for alli € I. Let A’ be the subgroup of G’ generated by A, p;,i € I, i.e.,
A plus the stable letters. By Britton’s Lemma, A’ is an HNN extension of A
with the same stable letters, and A’ NG = A.



Instead of Turing machines or register machines, the Aanderaa-Cohen proof
uses another kind of machines, called modular machines.

Definition 3. A modular machine M consists of an integer M > 1 and a finite
set of quadruples of the form (a,b, ¢, R) and (a,b, ¢, L) where M > a > 0 and
M >b>0and M? > ¢ > 0. We require that for each (a,b) there is at most
one quadruple of M beginning with (a, b).

A modular machine configuration is an ordered pair (a, 3) € N2. We write
(o, B) M, (a1,61) if and only if @« = uM + a and § = vM + b and there exists
c such that either

1. (a,b,c,R) € M and a; = uM? + c and (31 = v, or
2. (a,b,e,L) € M and a3 = v and 31 = vM? +c.

Note that the action of M on («, 3) depends on the class of («, 3) modulo M.
This is why we call M a “modular machine.”

M
We write (a, ) —* (@, ) if there exists a finite sequence

(a,8) = (a0, fo) 25 (a1, 81) 25 -+ M (e, B,) = (@, ).

Such a sequence is called a computation of M.

Theorem 4. There is a modular machine M such that the halting set

Hpy = {(04,5)

(@) = 0.0}

1S nonrecursive.

Proof. Let T be a Turing machine such that the set of eventually halting con-
figurations of 7 is nonrecursive. We may safely assume that, whenever 7 halts,
the tape is empty. We construct a modular machine M which simulates 7. Let
A be the tape alphabet of 7. Let @ be the set of internal states of 7. Let M be
the cardinality of the set AUQ. We may safely assume that A = {1,...,n} and
Q={n+1,...,M}. To each configuration ay, - - - ayqabs - - - b; of 7, we associate
two modular machine configurations (uM + q,vM + a) and (uM + a,vM + q),
where u = Ele a;M*~' and v = 22:1 bjMJ~!. For each quintuple gaq’a’D
of 7, where D € {R, L}, we let M have quadruples (¢,a,a’M + ¢’, D) and
(a,q,a’ M + ¢, D). The details are left to the reader. O

We shall use M to construct a finitely presented group with unsolvable word
problem. We begin with the particular group

G=(tz,y|zy=uyx).

For o, 3 € Z put
t(a, B) = a2~ % PrayP .



Note that the subgroup

T = (t(a,3) | o B € Z)

is free on these generators.
For any M >a >0 and N > b > 0, consider the subgroup

Tl%[N = (t(a,B) | @ =a mod M, 3 =bmod N)
= (t(uM +a,vN + ) | u,v € Z)

of T. Note that there is a canonical isomorphism T% N =~ 7. In addition,
let GMN be the subgroup of G generated by t(a,b),z™, y". Again, there is a
canonical isomorphism GMN =~ G.

Lemma 5. TMN =T nGMN.
Proof. For C, note that t(uM +a,vN +b) = 2= “My="N¢(a, b)z*MyoN € GMN
For D, note that 2™t(a, B) = t(a — M, B)z™ and yNt(a, 3) = t(a, B — N)y»,

hence any element of GM¥ is of the form gz*My*YN where g € TN and u,v € Z.
If this element is in T, then clearly v = v = 0, hence it is in TaI‘g[N. o

Definition 6. Given a modular machine
M = {(ai,bi,ci,R) | 1€ I} U {(aj,bj,cj,L) |j S J},

we construct an HNN extension G’y of G. For each i € I we introduce a
stable letter r; and specify that g — 7, L gr; extends the canonical isomorphism

MM M?,1 . . .
¢+ Gy =G, o . For each j € J we introduce a stable letter I; and specify
that g — l;lglj extends the canonical isomorphism ); : G%é\;ﬁ[ = Gé:fz. Thus,
the stable letters of G’y are r;, ¢ € I, and [;, j € J. Note that G’,, is finitely
presented.

By Lemma 5, T is a good subgroup of G with respect to the HNN extension
G' = G'y,. It follows that T'=T" N G. Consider also the subgroup

Thm = <t(0¢,6) | (avﬁ) € HM> .

Note that if ¢;(t(er, 8)) = t(aq, 1) or ¢;(t(e, B)) = t(aa, 1), then (a, 5) M,
(a1, B1), hence t(a, ) € Tmy = (a,8) € Hy <= (an,01) € Hy —
t(a1,01) € Taq. From this it follows that T is again a good subgroup of G
with respect to G'. Therefore, Thy =T, N G.

Lemma 7. T}, = (t)".

Proof. The D is obvious, because ¢ = t(0,0) € Thq. To prove C, it suffices to
show that t(«, ) € (t)’ for all (o, ) € Haq. We prove this by induction on the
length of the computation putting («, 3) into Haq. For (a, 8) = (0,0) we have



t(0,0) = t € (t)’. Assume now that («, ) M, (a1, B1) via (a;, b5, ¢, R). We
have
tlo, ) = o=y Ptay’

—uM—a;,,—vM—b

Y ltxuMJraI vM+b;

= xr y

= x_UMy_UMt(a’iu bl)xUMyUM )
hence ) )
ritt(a, By = @ My (e, 0)2 M yY

x—uM2—ciy—vtxuM2+ciyv

= t(uM?+¢;,v)

= t(a1,p).
If (o, 8) € Hp, then (a1, 81) € Haq by a shorter computation, hence by in-
ductive hypothesis t(a, 31) € (), hence t(a, 3) = rit(ay, B)r;* € (t). If
(o, B) M, (a1, B1) via (aj,bj,¢5, L), the proof is similar. O

It follows from the previous lemma that T = (t) N G.
Theorem 8. There is a finitely presented group with unsolvable word problem.

Proof. Let M be a modular machine as in Theorem 4. Let Gy, be the HNN
extension of G from Definition 6. Consider the further HNN extension

(G) = (G k| k™ bk =h,h e (1))

Since (t)’ is finitely generated, (G’y,)’ is finitely presented. By Britton’s Lemma,
for all g € G’y we have k~'gk = g <= g € (t). In particular k= 't(a, B)k =
t(a,0) = t(a,p) € (t) = t(a,0) € Tm <= (o,0) € Hyp. Thus
H a4, the halting problem for M, is reducible to the word problem for (G’,,)’.
It follows that the latter problem is unsolvable. o

Remark 9. We have seen that the word problem for (G’\,)’ is unsovable. In
addition, Aanderaa-Cohen [1] have shown that the word problem for (G’y,)" is
Turing equivalent to Hxq. Thus, there are finitely presented groups with word
problem of any prescribed recursively enumerable degree of unsolvability. This
result is originally due to Clapham, 1964.
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