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Abstract

A famous theorem of P. Novikov 1955 and W. W. Boone 1959 as-
serts the existence of a finitely presented group with unsolvable word
problem. In my Spring 2005 topics course (MATH 574, Topics in Mathe-
matical Logic), I presented Boone’s proof, as simplified by J. L. Britton,
1963. In this seminar I shall present a truly slick, streamlined proof, due
to S. Aanderaa and D. E. Cohen, 1980. Instead of Turing machines or
register machines, the Aanderaa-Cohen proof uses another kind of ma-
chines, called modular machines, which I shall discuss in detail. In addi-
tion, the Aanderaa-Cohen proof uses Britton’s Lemma. I shall omit the
proof of Britton’s Lemma, which can be found in my course notes [3] at
http://www.math.psu.edu/simpson/notes/.

We present the Aanderaa-Cohen [1] simplified proof of the unsolvability of
the word problem for finitely presented groups.

Like the original Boone-Britton proof, the Aanderaa-Cohen proof is based on
HNN extensions and Britton’s Lemma. The statement and proof of Britton’s
Lemma are in [3]. Here we mention some consequences of Britton’s Lemma
which we shall need.

Definition 1. Let G be any group, and let φi : Hi
∼= Ki, i ∈ I, be a family of

isomorphisms between subgroups of G. Then the group

G′ = 〈G, pi, i ∈ I | p−1

i hpi = φi(h), h ∈ Hi, i ∈ I〉

is called an HNN extension of G with stable letters pi, i ∈ I. By Britton’s
Lemma, G ⊆ G′.

Definition 2. A good subgroup of G is a subgroup A ⊆ G such that φi(A∩Hi) =
A∩Ki for all i ∈ I. Let A′ be the subgroup of G′ generated by A, pi, i ∈ I, i.e.,
A plus the stable letters. By Britton’s Lemma, A′ is an HNN extension of A
with the same stable letters, and A′ ∩G = A.
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Instead of Turing machines or register machines, the Aanderaa-Cohen proof
uses another kind of machines, called modular machines.

Definition 3. A modular machine M consists of an integer M > 1 and a finite
set of quadruples of the form (a, b, c, R) and (a, b, c, L) where M > a ≥ 0 and
M > b ≥ 0 and M2 > c ≥ 0. We require that for each (a, b) there is at most
one quadruple of M beginning with (a, b).

A modular machine configuration is an ordered pair (α, β) ∈ N
2. We write

(α, β)
M
−→ (α1, β1) if and only if α = uM + a and β = vM + b and there exists

c such that either

1. (a, b, c, R) ∈ M and α1 = uM2 + c and β1 = v, or

2. (a, b, c, L) ∈ M and α1 = u and β1 = vM2 + c.

Note that the action of M on (α, β) depends on the class of (α, β) modulo M .
This is why we call M a “modular machine.”

We write (α, β)
M

−→∗ (α, β) if there exists a finite sequence

(α, β) = (α0, β0)
M
−→ (α1, β1)

M
−→ · · ·

M
−→ (αn, βn) = (α, β) .

Such a sequence is called a computation of M.

Theorem 4. There is a modular machine M such that the halting set

HM =

{

(α, β)

∣

∣

∣

∣

(α, β)
M

−→∗ (0, 0)

}

is nonrecursive.

Proof. Let T be a Turing machine such that the set of eventually halting con-
figurations of T is nonrecursive. We may safely assume that, whenever T halts,
the tape is empty. We construct a modular machine M which simulates T . Let
A be the tape alphabet of T . Let Q be the set of internal states of T . Let M be
the cardinality of the set A∪Q. We may safely assume that A = {1, . . . , n} and
Q = {n+1, . . . ,M}. To each configuration ak · · ·a1qab1 · · · bl of T , we associate
two modular machine configurations (uM + q, vM + a) and (uM + a, vM + q),

where u =
∑k

i=1
aiM

i−1 and v =
∑l

j=1
bjM

j−1. For each quintuple qaq′a′D
of T , where D ∈ {R,L}, we let M have quadruples (q, a, a′M + q′, D) and
(a, q, a′M + q′, D). The details are left to the reader.

We shall use M to construct a finitely presented group with unsolvable word
problem. We begin with the particular group

G = 〈t, x, y | xy = yx〉 .

For α, β ∈ Z put
t(α, β) = x−αy−βtxαyβ .
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Note that the subgroup

T = 〈t(α, β) | α, β ∈ Z〉

is free on these generators.
For any M > a ≥ 0 and N > b ≥ 0, consider the subgroup

TMN
ab = 〈t(α, β) | α ≡ a mod M,β ≡ b mod N〉

= 〈t(uM + a, vN + b) | u, v ∈ Z〉

of T . Note that there is a canonical isomorphism TMN
ab

∼= T . In addition,
let GMN

ab be the subgroup of G generated by t(a, b), xM , yN . Again, there is a
canonical isomorphism GMN

ab
∼= G.

Lemma 5. TMN
ab = T ∩GMN

ab .

Proof. For ⊆, note that t(uM +a, vN +b) = x−uMy−vN t(a, b)xuMyvN ∈ GMN
ab .

For ⊇, note that xM t(α, β) = t(α −M,β)xM and yN t(α, β) = t(α, β −N)yN ,
hence any element ofGMN

ab is of the form gxuMyvN where g ∈ TMN
ab and u, v ∈ Z.

If this element is in T , then clearly u = v = 0, hence it is in TMN
ab .

Definition 6. Given a modular machine

M = {(ai, bi, ci, R) | i ∈ I} ∪ {(aj, bj , cj , L) | j ∈ J} ,

we construct an HNN extension G′
M

of G. For each i ∈ I we introduce a
stable letter ri and specify that g 7→ r−1

i gri extends the canonical isomorphism

φi : GMM
aibi

∼= G
M2,1
ci,0

. For each j ∈ J we introduce a stable letter lj and specify

that g 7→ l−1

j glj extends the canonical isomorphism ψj : GMM
ajbj

∼= G
1,M2

0,cj
. Thus,

the stable letters of G′
M

are ri, i ∈ I, and lj , j ∈ J . Note that G′
M

is finitely
presented.

By Lemma 5, T is a good subgroup of G with respect to the HNN extension
G′ = G′

M
. It follows that T = T ′ ∩G. Consider also the subgroup

TM = 〈t(α, β) | (α, β) ∈ HM〉 .

Note that if φi(t(α, β)) = t(α1, β1) or ψj(t(α, β)) = t(α1, β1), then (α, β)
M
−→

(α1, β1), hence t(α, β) ∈ TM ⇐⇒ (α, β) ∈ HM ⇐⇒ (α1, β1) ∈ HM ⇐⇒
t(α1, β1) ∈ TM. From this it follows that TM is again a good subgroup of G
with respect to G′. Therefore, TM = T ′

M
∩G.

Lemma 7. T ′
M

= 〈t〉′.

Proof. The ⊇ is obvious, because t = t(0, 0) ∈ TM. To prove ⊆, it suffices to
show that t(α, β) ∈ 〈t〉′ for all (α, β) ∈ HM. We prove this by induction on the
length of the computation putting (α, β) into HM. For (α, β) = (0, 0) we have
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t(0, 0) = t ∈ 〈t〉′. Assume now that (α, β)
M
−→ (α1, β1) via (ai, bi, ci, R). We

have
t(α, β) = x−αy−βtxαyβ

= x−uM−aiy−vM−bitxuM+aiyvM+bi

= x−uMy−vM t(ai, bi)x
uMyvM ,

hence
r−1

i t(α, β)ri = x−uM2

y−vt(ci, 0)xuM2

yv

= x−uM2
−ciy−vtxuM2

+ciyv

= t(uM2 + ci, v)

= t(α1, β1) .

If (α, β) ∈ HM, then (α1, β1) ∈ HM by a shorter computation, hence by in-
ductive hypothesis t(α1, β1) ∈ 〈t〉′, hence t(α, β) = rit(α1, β1)r

−1

i ∈ 〈t〉′. If

(α, β)
M
−→ (α1, β1) via (aj , bj, cj , L), the proof is similar.

It follows from the previous lemma that TM = 〈t〉′ ∩G.

Theorem 8. There is a finitely presented group with unsolvable word problem.

Proof. Let M be a modular machine as in Theorem 4. Let G′
M

be the HNN
extension of G from Definition 6. Consider the further HNN extension

(G′

M)′ = 〈G′

M, k | k−1hk = h, h ∈ 〈t〉′〉 .

Since 〈t〉′ is finitely generated, (G′
M

)′ is finitely presented. By Britton’s Lemma,
for all g ∈ G′

M
we have k−1gk = g ⇐⇒ g ∈ 〈t〉′. In particular k−1t(α, β)k =

t(α, β) ⇐⇒ t(α, β) ∈ 〈t〉′ ⇐⇒ t(α, β) ∈ TM ⇐⇒ (α, β) ∈ HM. Thus
HM, the halting problem for M, is reducible to the word problem for (G′

M
)′.

It follows that the latter problem is unsolvable.

Remark 9. We have seen that the word problem for (G′
M

)′ is unsovable. In
addition, Aanderaa-Cohen [1] have shown that the word problem for (G′

M
)′ is

Turing equivalent to HM. Thus, there are finitely presented groups with word
problem of any prescribed recursively enumerable degree of unsolvability. This
result is originally due to Clapham, 1964.
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