A Slick Proof of the Unsolvability of the Word Problem for Finitely Presented Groups

Stephen G. Simpson

First draft: May 17, 2005
This draft: May 18, 2005

Abstract

A famous theorem of P. Novikov 1955 and W. W. Boone 1959 asserts the existence of a finitely presented group with unsolvable word problem. In my Spring 2005 topics course (MATH 574, Topics in Mathematical Logic), I presented Boone's proof, as simplified by J. L. Britton, 1963. In this seminar I shall present a truly slick, streamlined proof, due to S. Aanderaa and D. E. Cohen, 1980. Instead of Turing machines or register machines, the Aanderaa-Cohen proof uses another kind of machines, called modular machines, which I shall discuss in detail. In addition, the Aanderaa-Cohen proof uses Britton's Lemma. I shall omit the proof of Britton's Lemma, which can be found in my course notes [3] at http://www.math.psu.edu/simpson/notes/.

We present the Aanderaa-Cohen [1] simplified proof of the unsolvability of the word problem for finitely presented groups.

Like the original Boone-Britton proof, the Aanderaa-Cohen proof is based on HNN extensions and Britton's Lemma. The statement and proof of Britton's Lemma are in [3]. Here we mention some consequences of Britton's Lemma which we shall need.

Definition 1. Let G be any group, and let $\phi_{i}: H_{i} \cong K_{i}, i \in I$, be a family of isomorphisms between subgroups of G. Then the group

$$
G^{\prime}=\left\langle G, p_{i}, i \in I \mid p_{i}^{-1} h p_{i}=\phi_{i}(h), h \in H_{i}, i \in I\right\rangle
$$

is called an HNN extension of G with stable letters $p_{i}, i \in I$. By Britton's Lemma, $G \subseteq G^{\prime}$.
Definition 2. A good subgroup of G is a subgroup $A \subseteq G$ such that $\phi_{i}\left(A \cap H_{i}\right)=$ $A \cap K_{i}$ for all $i \in I$. Let A^{\prime} be the subgroup of G^{\prime} generated by $A, p_{i}, i \in I$, i.e., A plus the stable letters. By Britton's Lemma, A^{\prime} is an HNN extension of A with the same stable letters, and $A^{\prime} \cap G=A$.

Instead of Turing machines or register machines, the Aanderaa-Cohen proof uses another kind of machines, called modular machines.

Definition 3. A modular machine \mathcal{M} consists of an integer $M>1$ and a finite set of quadruples of the form (a, b, c, R) and (a, b, c, L) where $M>a \geq 0$ and $M>b \geq 0$ and $M^{2}>c \geq 0$. We require that for each (a, b) there is at most one quadruple of \mathcal{M} beginning with (a, b).

A modular machine configuration is an ordered pair $(\alpha, \beta) \in \mathbb{N}^{2}$. We write $(\alpha, \beta) \xrightarrow{\mathcal{M}}\left(\alpha_{1}, \beta_{1}\right)$ if and only if $\alpha=u M+a$ and $\beta=v M+b$ and there exists c such that either

1. $(a, b, c, R) \in \mathcal{M}$ and $\alpha_{1}=u M^{2}+c$ and $\beta_{1}=v$, or
2. $(a, b, c, L) \in \mathcal{M}$ and $\alpha_{1}=u$ and $\beta_{1}=v M^{2}+c$.

Note that the action of \mathcal{M} on (α, β) depends on the class of (α, β) modulo M. This is why we call \mathcal{M} a "modular machine."

We write $(\alpha, \beta) \xrightarrow{\mathcal{M}} *(\bar{\alpha}, \bar{\beta})$ if there exists a finite sequence

$$
(\alpha, \beta)=\left(\alpha_{0}, \beta_{0}\right) \xrightarrow{\mathcal{M}}\left(\alpha_{1}, \beta_{1}\right) \xrightarrow{\mathcal{M}} \cdots \xrightarrow{\mathcal{M}}\left(\alpha_{n}, \beta_{n}\right)=(\bar{\alpha}, \bar{\beta}) .
$$

Such a sequence is called a computation of \mathcal{M}.
Theorem 4. There is a modular machine \mathcal{M} such that the halting set

$$
H_{\mathcal{M}}=\left\{(\alpha, \beta) \mid(\alpha, \beta) \xrightarrow{\mathcal{M}}^{*}(0,0)\right\}
$$

is nonrecursive.
Proof. Let \mathcal{T} be a Turing machine such that the set of eventually halting configurations of \mathcal{T} is nonrecursive. We may safely assume that, whenever \mathcal{T} halts, the tape is empty. We construct a modular machine \mathcal{M} which simulates \mathcal{T}. Let A be the tape alphabet of \mathcal{T}. Let Q be the set of internal states of \mathcal{T}. Let M be the cardinality of the set $A \cup Q$. We may safely assume that $A=\{1, \ldots, n\}$ and $Q=\{n+1, \ldots, M\}$. To each configuration $a_{k} \cdots a_{1} q a b_{1} \cdots b_{l}$ of \mathcal{T}, we associate two modular machine configurations $(u M+q, v M+a)$ and $(u M+a, v M+q)$, where $u=\sum_{i=1}^{k} a_{i} M^{i-1}$ and $v=\sum_{j=1}^{l} b_{j} M^{j-1}$. For each quintuple $q a q^{\prime} a^{\prime} D$ of \mathcal{T}, where $D \in\{R, L\}$, we let \mathcal{M} have quadruples $\left(q, a, a^{\prime} M+q^{\prime}, D\right)$ and $\left(a, q, a^{\prime} M+q^{\prime}, D\right)$. The details are left to the reader.

We shall use \mathcal{M} to construct a finitely presented group with unsolvable word problem. We begin with the particular group

$$
G=\langle t, x, y \mid x y=y x\rangle
$$

For $\alpha, \beta \in \mathbb{Z}$ put

$$
t(\alpha, \beta)=x^{-\alpha} y^{-\beta} t x^{\alpha} y^{\beta}
$$

Note that the subgroup

$$
T=\langle t(\alpha, \beta) \mid \alpha, \beta \in \mathbb{Z}\rangle
$$

is free on these generators.
For any $M>a \geq 0$ and $N>b \geq 0$, consider the subgroup

$$
\begin{aligned}
T_{a b}^{M N} & =\langle t(\alpha, \beta) \mid \alpha \equiv a \bmod M, \beta \equiv b \bmod N\rangle \\
& =\langle t(u M+a, v N+b) \mid u, v \in \mathbb{Z}\rangle
\end{aligned}
$$

of T. Note that there is a canonical isomorphism $T_{a b}^{M N} \cong T$. In addition, let $G_{a b}^{M N}$ be the subgroup of G generated by $t(a, b), x^{M}, y^{N}$. Again, there is a canonical isomorphism $G_{a b}^{M N} \cong G$.

Lemma 5. $T_{a b}^{M N}=T \cap G_{a b}^{M N}$.
Proof. For \subseteq, note that $t(u M+a, v N+b)=x^{-u M} y^{-v N} t(a, b) x^{u M} y^{v N} \in G_{a b}^{M N}$. For \supseteq, note that $x^{M} t(\alpha, \beta)=t(\alpha-M, \beta) x^{M}$ and $y^{N} t(\alpha, \beta)=t(\alpha, \beta-N) y^{N}$, hence any element of $G_{a b}^{M N}$ is of the form $g x^{u M} y^{v N}$ where $g \in T_{a b}^{M N}$ and $u, v \in \mathbb{Z}$. If this element is in T, then clearly $u=v=0$, hence it is in $T_{a b}^{M N}$.

Definition 6. Given a modular machine

$$
\mathcal{M}=\left\{\left(a_{i}, b_{i}, c_{i}, R\right) \mid i \in I\right\} \cup\left\{\left(a_{j}, b_{j}, c_{j}, L\right) \mid j \in J\right\}
$$

we construct an HNN extension $G_{\mathcal{M}}^{\prime}$ of G. For each $i \in I$ we introduce a stable letter r_{i} and specify that $g \mapsto r_{i}^{-1} g r_{i}$ extends the canonical isomorphism $\phi_{i}: G_{a_{i} b_{i}}^{M M} \cong G_{c_{i}, 0}^{M^{2}, 1}$. For each $j \in J$ we introduce a stable letter l_{j} and specify that $g \mapsto l_{j}^{-1} g l_{j}$ extends the canonical isomorphism $\psi_{j}: G_{a_{j} b_{j}}^{M M} \cong G_{0, c_{j}}^{1, M^{2}}$. Thus, the stable letters of $G_{\mathcal{M}}^{\prime}$ are $r_{i}, i \in I$, and $l_{j}, j \in J$. Note that $G_{\mathcal{M}}^{\prime}$ is finitely presented.

By Lemma 5, T is a good subgroup of G with respect to the HNN extension $G^{\prime}=G_{\mathcal{M}}^{\prime}$. It follows that $T=T^{\prime} \cap G$. Consider also the subgroup

$$
T_{\mathcal{M}}=\left\langle t(\alpha, \beta) \mid(\alpha, \beta) \in H_{\mathcal{M}}\right\rangle
$$

Note that if $\phi_{i}(t(\alpha, \beta))=t\left(\alpha_{1}, \beta_{1}\right)$ or $\psi_{j}(t(\alpha, \beta))=t\left(\alpha_{1}, \beta_{1}\right)$, then $(\alpha, \beta) \xrightarrow{\mathcal{M}}$ $\left(\alpha_{1}, \beta_{1}\right)$, hence $t(\alpha, \beta) \in T_{\mathcal{M}} \Longleftrightarrow(\alpha, \beta) \in H_{\mathcal{M}} \Longleftrightarrow\left(\alpha_{1}, \beta_{1}\right) \in H_{\mathcal{M}} \Longleftrightarrow$ $t\left(\alpha_{1}, \beta_{1}\right) \in T_{\mathcal{M}}$. From this it follows that $T_{\mathcal{M}}$ is again a good subgroup of G with respect to G^{\prime}. Therefore, $T_{\mathcal{M}}=T_{\mathcal{M}}^{\prime} \cap G$.

Lemma 7. $T_{\mathcal{M}}^{\prime}=\langle t\rangle^{\prime}$.
Proof. The \supseteq is obvious, because $t=t(0,0) \in T_{\mathcal{M}}$. To prove \subseteq, it suffices to show that $t(\alpha, \beta) \in\langle t\rangle^{\prime}$ for all $(\alpha, \beta) \in H_{\mathcal{M}}$. We prove this by induction on the length of the computation putting (α, β) into $H_{\mathcal{M}}$. For $(\alpha, \beta)=(0,0)$ we have
$t(0,0)=t \in\langle t\rangle^{\prime}$. Assume now that $(\alpha, \beta) \xrightarrow{\mathcal{M}}\left(\alpha_{1}, \beta_{1}\right)$ via $\left(a_{i}, b_{i}, c_{i}, R\right)$. We have

$$
\begin{aligned}
t(\alpha, \beta) & =x^{-\alpha} y^{-\beta} t x^{\alpha} y^{\beta} \\
& =x^{-u M-a_{i}} y^{-v M-b_{i}} t x^{u M+a_{i}} y^{v M+b_{i}} \\
& =x^{-u M} y^{-v M} t\left(a_{i}, b_{i}\right) x^{u M} y^{v M}
\end{aligned}
$$

hence

$$
\begin{aligned}
r_{i}^{-1} t(\alpha, \beta) r_{i} & =x^{-u M^{2}} y^{-v} t\left(c_{i}, 0\right) x^{u M^{2}} y^{v} \\
& =x^{-u M^{2}-c_{i}} y^{-v} t x^{u M^{2}+c_{i}} y^{v} \\
& =t\left(u M^{2}+c_{i}, v\right) \\
& =t\left(\alpha_{1}, \beta_{1}\right) .
\end{aligned}
$$

If $(\alpha, \beta) \in H_{\mathcal{M}}$, then $\left(\alpha_{1}, \beta_{1}\right) \in H_{\mathcal{M}}$ by a shorter computation, hence by inductive hypothesis $t\left(\alpha_{1}, \beta_{1}\right) \in\langle t\rangle^{\prime}$, hence $t(\alpha, \beta)=r_{i} t\left(\alpha_{1}, \beta_{1}\right) r_{i}^{-1} \in\langle t\rangle^{\prime}$. If $(\alpha, \beta) \xrightarrow{\mathcal{M}}\left(\alpha_{1}, \beta_{1}\right)$ via $\left(a_{j}, b_{j}, c_{j}, L\right)$, the proof is similar.

It follows from the previous lemma that $T_{\mathcal{M}}=\langle t\rangle^{\prime} \cap G$.
Theorem 8. There is a finitely presented group with unsolvable word problem.
Proof. Let \mathcal{M} be a modular machine as in Theorem 4. Let $G_{\mathcal{M}}^{\prime}$ be the HNN extension of G from Definition 6. Consider the further HNN extension

$$
\left(G_{\mathcal{M}}^{\prime}\right)^{\prime}=\left\langle G_{\mathcal{M}}^{\prime}, k \mid k^{-1} h k=h, h \in\langle t\rangle^{\prime}\right\rangle .
$$

Since $\langle t\rangle^{\prime}$ is finitely generated, $\left(G_{\mathcal{M}}^{\prime}\right)^{\prime}$ is finitely presented. By Britton's Lemma, for all $g \in G_{\mathcal{M}}^{\prime}$ we have $k^{-1} g k=g \Longleftrightarrow g \in\langle t\rangle^{\prime}$. In particular $k^{-1} t(\alpha, \beta) k=$ $t(\alpha, \beta) \Longleftrightarrow t(\alpha, \beta) \in\langle t\rangle^{\prime} \Longleftrightarrow t(\alpha, \beta) \in T_{\mathcal{M}} \Longleftrightarrow(\alpha, \beta) \in H_{\mathcal{M}}$. Thus $H_{\mathcal{M}}$, the halting problem for \mathcal{M}, is reducible to the word problem for $\left(G_{\mathcal{M}}^{\prime}\right)^{\prime}$. It follows that the latter problem is unsolvable.

Remark 9. We have seen that the word problem for $\left(G_{\mathcal{M}}^{\prime}\right)^{\prime}$ is unsovable. In addition, Aanderaa-Cohen [1] have shown that the word problem for $\left(G_{\mathcal{M}}^{\prime}\right)^{\prime}$ is Turing equivalent to $H_{\mathcal{M}}$. Thus, there are finitely presented groups with word problem of any prescribed recursively enumerable degree of unsolvability. This result is originally due to Clapham, 1964.

References

[1] Stål Aanderaa and Daniel E. Cohen. Modular machines I, II. In [2], pages 1-18, 19-28, 1980.
[2] S. I. Adian, W. W. Boone, and G. Higman, editors. Word Problems II: The Oxford Book. Studies in Logic and the Foundations of Mathematics. North-Holland, 1980. X +578 pages.
[3] Stephen G. Simpson. Topics in Mathematical Logic - Spring 2005. Unpublished lecture notes, Department of Mathematics, Pennsylvania State University, 75 pages, 2005.

