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Abstract

Let P and Q be sets of reals. P is said to be Muchnik reducible to Q if
every member of Q Turing-computes a member of P . A Muchnik degree is
an equivalence class of sets of reals under mutual Muchnik reducibility. It
is easy to see that the Muchnik degrees form a distributive lattice under
the partial ordering induced by Muchnik reducibility. Call this lattice
L. We study not only L but also its countable distributive sublattice L0

consisting of the Muchnik degrees of nonempty Π0

1 subsets of the closed
unit interval [0, 1]. We present a variety of results and techniques which
have been useful in recent investigations.

1 Introduction

Remark 1.1. Insofar as we are interested in the lattice of all Muchnik degrees,
it doesn’t matter whether we deal with subsets of the real line R, or of the Baire
space ωω, or the Cantor space 2ω. However, when we turn to Π0

1 sets, there is
a difference, because 2ω is compact while ωω is not.

Our main focus here is the lattice of Muchnik degrees of nonempty Π0
1 subsets

of 2ω. For technical reasons, we shall also discuss Π0
1 subsets of ωω.

Definition 1.2. For P,Q ⊆ ωω, P is said to be Muchnik reducible to Q if
for every g ∈ Q there exists f ∈ P such that f ≤T g. (Note that ≤T stands
for Turing reducibility.) This is abbreviated P ≤w Q, where the w stands
for “weak reducibility”. In this terminology, “strong reducibility” is Medvedev
reducibility, given by P ≤s Q if there exists a partial recursive functional Φ :
Q → P , i.e., the domain of Φ includes Q, and for all g ∈ Q we have Φ(g) ∈ P .

Remark 1.3. Thus Medvedev (“strong”) reducibility is the uniform variant of
Muchnik (“weak”) reducibility. Later we shall see an analogy

Muchnik reducibility / Medvedev reducibility =

Turing reducibility / truth-table reducibility.
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Remark 1.4. The least upper bound operation for Muchnik or Medvedev re-
ducibility is given by

P ×Q = {f ⊕ g | f ∈ P, g ∈ Q}.

The greatest lower bound operation for Muchnik reducibility is given by P ∪Q.
The greatest lower bound operation for Muchnik or Medvedev reducibility is
given by

P +Q = {〈0〉af | f ∈ P} ∪ {〈1〉ag | g ∈ Q}.

It is easy to see that the Muchnik degrees form a distributive lattice under these
operations. Similarly for the Medvedev degrees.

Remark 1.5. The smallest Muchnik degree is 0, the Muchnik degree of ωω, or
equivalently the Muchnik degree of any P ⊆ ωω containing a recursive element.
Furthermore, 0 is meet irreducible, i.e., 0 is not the greatest lower bound of two
nonzero Muchnik degrees. Similarly for Medvedev degrees.

Definition 1.6. A set P ⊆ ωω is said to be Π0
1 if there exists a recursive

predicate R ⊆ ω × ωω such that P = {f ∈ ωω | ∀nR(n, f)}.
Equivalently, P ⊆ ωω is Π0

1 if and only if

P = {f ∈ ωω | f is a path through T }

for some recursive tree T ⊆ ω<ω.

Example 1.7. An interesting example of a Π0
1 subset of ω

ω of nonzero Muchnik
degree is

DNR = {f ∈ ωω | ∀n f(n) 6= ϕ(1)
n (n)},

i.e., the set of f : ω → ω which are diagonally nonrecursive.

Definition 1.8. A set P ⊆ ωω is said to be recursively bounded if there exists
a recursive function g ∈ ωω such that for all f ∈ P , f(n) < g(n) for all n. Note
that any P ⊆ 2ω is recursively bounded.

The next lemma shows that the study of Medvedev and Muchnik degrees of
recursively bounded Π0

1 subsets of ωω is equivalent to the study of Π0
1 subsets

of 2ω.

Definition 1.9. P,Q ⊆ ωω are recursively homeomorphic if there exist partial
recursive functionals Φ : P → Q and Φ−1 : Q → P .

Lemma 1.10. For any recursively bounded Π0
1 set P ⊆ ωω, there exists a Π0

1

set P ∗ ⊆ 2ω such that P is recursively homeomorphic to P ∗.

Remark 1.11. If P,Q are Π0
1 then P × Q, P ∪ Q, P + Q are Π0

1. Also,
if P,Q ⊆ 2ω, then P × Q,P ∪ Q,P + Q ⊆ 2ω. Thus the Muchnik degrees of
nonempty Π0

1 subsets of 2
ω form a countable distributive sublattice of the lattice

of all Muchnik degrees. Similarly for Medvedev degrees.
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Definition 1.12. A nonempty Π0
1 set P ⊆ 2ω is said to be Muchnik com-

plete if every nonempty Π0
1 subset of 2ω is Muchnik reducible to P . Medvedev

completeness is defined similarly.

Remark 1.13. We use 1 to denote the degree of a Muchnik degree of a
nonempty Π0

1 subset of 2ω which is Muchnik complete. Similarly for Medvedev
degrees.

Example 1.14. The following Π0
1 subsets of 2ω are known to be Medvedev

complete, hence Muchnik complete.

1. P = {completions of PA}. Instead of PA we could use any effectively
axiomatizable, effectively essentially undecidable theory. This is related
to the Gödel/Rosser Theorem.

2. P = {f ∈ 2ω | f separates A and B}, where A = {n | ϕ
(1)
n (n) ≃ 0} and

B = {n | ϕ
(1)
n (n) ≃ 1}.

3. We can also give an explicit, recursion-theoretic construction of a Π0
1 set

P with the desired property. Roughly, P =
∏∞

n=0 Pn where Pn is the nth
nonempty Π0

1 subset of 2ω.

Theorem 1.15 (Simpson 2000). Any two Medvedev complete Π0
1 subsets of

2ω are recursively homeomorphic.

Proof. The proof is by an effective back-and-forth argument, using the Recursion
Theorem. It it similar to the proof of Myhill’s result that any two creative,
recursively enumerable subsets of ω are recursively isomorphic. 2

The following example shows that Medvedev completeness is not the same
as Muchnik completeness.

Example 1.16 (Jockusch 1989). For k ≥ 2 let DNRk be the set of functions
f : ω → {1, . . . , k} which are DNR. It is easy to see that the sets DNRk, k =
2, 3, . . ., are Π0

1 and recursively bounded, and that DNR2 is Medvedev complete.
Jockusch has shown that the the sets DNRk, k = 2, 3, . . . are Muchnik complete
but of different Medvedev degrees. Thus we have DNR2 ≡w DNR3 ≡w . . . yet
DNR2 >s DNR3 >s . . ..

An interesting relationship between Muchnik (“strong”) andMedvedev (“weak”)
reducibility is given by the following theorem.

Theorem 1.17 (Simpson 2001). Let P,Q ⊆ 2ω be nonempty Π0
1 sets. If

P ≤w Q, then there exists a nonempty Π0
1 set Q′ ⊆ Q such that P ≤s Q

′.

Proof. We shall prove this later, as a consequence of the Almost Recursive Basis
Theorem. 2

Corollary 1.18. If Q ⊆ 2ω is Π0
1 and Muchnik complete, then there is a Π0

1

set Q′ ⊆ Q such that Q′ is Medvedev complete.
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Definition 1.19. P,Q ⊆ ωω are said to be Turing degree isomorphic if there
exists a Turing-degree-preserving one-to-one correspondence between P and Q.
Clearly recursive homeomorphism implies Turing degree isomorphism.

Theorem 1.20 (Simpson 2001). Any two Muchnik complete Π0
1 subsets of

2ω are Turing degree isomorphic.

Proof. This follows easily from Theorem 1.15 and Corollary 1.18. 2

Corollary 1.21. A nonempty Π0
1 subset of 2ω is Muchnik complete if and only

if it is Turing degree isomorphic to the set of completions of PA.

Corollary 1.22. Any two nonempty Π0
1 subsets of

⋃∞

k=0 DNRk are Turing de-

gree isomorphic.

Corollary 1.23. If P is Muchnik complete, then the set of Turing degrees of

members of P is upward closed.

Proof. Let P be Muchnik complete. Put Q = P × 2ω. Clearly Q is Muchnik
complete, and the set of Turing degrees of members of Q is upward closed. By
Theorem 1.20, P and Q are Turing degree isomorphic. 2

Corollary 1.24 (Solovay). The set of Turing degrees of completions of PA is

upward closed.

2 1-Random Reals

We use the “fair coin” measure on 2ω. Thus µ({X ∈ 2ω : X(n) = 1}) = 1/2 for
all n ∈ ω.

Definition 2.1. An effective null Gδ is a set S ⊆ 2ω of the form S =
⋂∞

n=0 Un

where Un, n ∈ ω, is a recursive sequence of Σ0
1 sets such that µ(Un) < 1/2n for

all n.

Definition 2.2. X ∈ 2ω is 1-random if X /∈ S for all effective null Gδ sets S.
The set of 1-random reals is denoted R1. Clearly µ(R1) = 1.

Theorem 2.3 (Martin-Löf 1966). The union of all effective null Gδ sets is

an effective null Gδ set.

Proof. The proof is by a diagonal argument. 2

Corollary 2.4. 2ω \R1 is an effective null Gδ set. Hence R1 is Σ0
2.

Corollary 2.5. R1 =
⋃∞

n=0 Pn where Pn, n ∈ ω, is a sequence of Π0
1 sets.

Theorem 2.6. Let Q ⊆ 2ω be Π0
1 of measure 0. Then Q is an effective null Gδ

set.

Proof. Straightforward. 2
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Corollary 2.7. Let Q ⊆ 2ω be Π0
1. We have µ(Q) > 0 if and only if Q∩R1 6= ∅.

In this case we actually have Q ∩R1 ⊇ P 6= ∅, where P is Π0
1 and µ(P ) > 0.

Theorem 2.8 (Kučera 1985). Let Q ⊆ 2ω be Π0
1 with µ(Q) > 0. Then for all

1-random X ∈ 2ω we have that X(k) ∈ Q for some k. Here X(k)(n) = X(k+n)
for all n.

Proof. Define Qn for n = 1, 2, 3, . . .. Then 2ω \
⋃∞

n=1 Q
n is an effective null Gδ

set. Hence X ∈ Qn for some n. It follows that X(k) ∈ Q for some k. 2

Corollary 2.9. Let Q ⊆ 2ω be Π0
1 with µ(Q) > 0. Then Q ≤w R1.

Corollary 2.10. Let Q be a nonempty Π0
1 subset of R1. Then Q ≡w R1.

Corollary 2.11. Among all Muchnik degrees of Π0
1 sets Q ⊆ 2ω with µ(Q) > 0,

there is a largest one, namely the Muchnik degree of R1. Call this Muchnik

degree r1.

Theorem 2.12 (Jockusch/Soare 1972). Let A,B ⊆ ω be recursively insep-

arable. Then µ({X ∈ 2ω : ∃Y ≤T X (Y separates A,B)}) = 0.

Proof. Not difficult. 2

Corollary 2.13. The Muchnik degree r1 = degw(R1) of Corollary 2.11 is not

Muchnik complete. We have 0 < r1 < 1.

3 The Almost Recursive Basis Theorem

Definition 3.1. X is almost recursive (a.k.a., hyperimmune-free) if for all func-
tions f : ω → ω recursive in X , there exists a recursive function g : ω → ω such
that f(n) < g(n) for all n.

The following is the Almost Recursive Basis Theorem.

Theorem 3.2 (Jockusch/Soare 1972). Let P ⊆ 2ω be Π0
1 and nonempty.

Then there exists X ∈ P such that X is almost recursive.

Proof. Let P = P0 ⊇ P1 ⊇ · · · ⊇ Pn ⊇ · · · be a generic sequence of nonempty
Π0

1 sets. It can be shown that the unique X ∈
⋂∞

n=0 Pn is almost recursive. 2

Corollary 3.3. There exists a completion of PA which is almost recursive.

Corollary 3.4. There exists a 1-random X ∈ 2ω which is almost recursive.

Lemma 3.5. Suppose X is almost recursive and X ≥T Y . Then Y is truth-

table reducible to X. In particular, there exists a total recursive functional

Φ : 2ω → 2ω such that Φ(X) = Y .
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Proof. Let e be such that Y = {e}X . Define f : ω → ω by f(n) = the least s

such that {e}
X[s]
s (n) is defined. Clearly f ≤T X . Let g : ω → ω be recursive

such that f(n) ≤ g(n) for all n. Define a truth-table functional Φ : 2ω → 2ω by

putting Φ(Z)(n) = {e}
Z[g(n)]
g(n) (n) if this is defined, and Φ(Z)(n) = 0 otherwise.

Clearly Φ(X) = Y . 2

Theorem 3.6 (Simpson 2001). Let P,Q ⊆ 2ω be nonempty Π0
1 sets. If

P ≤w Q, then there is a nonempty Π0
1 set Q′ ⊆ Q such that P ≤s Q

′.

Proof. Assume P ≤w Q. By Theorem 3.2 let Y ∈ Q be almost recursive. Let
X ∈ P be such that X ≤T Y . By Lemma 3.5 let Φ : 2ω → 2ω be a truth-table
functional such that Φ(Y ) = X . Put Q′ = Q∩Φ−1(P ). Then Q′ is a nonempty
Π0

1 subset of Q, and P ≤s Q
′ via Φ. 2

Corollary 3.7. Let X be 1-random and almost recursive. Then there is no

completion of PA which is ≤T X.

Proof. Otherwise there would be a Medvedev complete Π0
1 set P ⊆ 2ω with

µ(P ) > 0. 2

4 The Σ0
3 → Π0

1 Theorem

Theorem 4.1 (Simpson 2002). If S ⊆ ωω is Σ0
3, then for all Π0

1 sets P ⊆ 2ω

there is a Π0
1 set Q ⊆ 2ω such that Q ≡w S ∪ P .

Proof. First use a Skolem function technique to reduce to the case when S is
a Π0

1 subset of ωω. After that, let TS be a recursive subtree of ω<ω such that
S is the set of paths through TS. Let TP be a recursive subtree of 2<ω such
that P is the set of paths through TP . We may assume that, for all τ ∈ TS and
n < lh(τ), τ(n) ≥ 2. Define TQ to be the set of sequences ρ ∈ ω<ω of the form

σ0
a〈n0〉

aσ1
a〈n1〉

a · · ·a〈nk−1〉
aσk

where 〈n0, n1, . . . , nk−1〉 ∈ TS, σ0, σ1, . . . , σk ∈ TP , and ρ(m) ≤ m + 2 for all
m < lh(ρ). Thus TQ is a recursive subtree of ω<ω. Let Q ⊆ ωω be the set of
paths through TQ. It is not hard to see that Q ≡w S∪P . Note that Q is Π0

1 and
recursively bounded. Hence by Lemma 1.10 there is a Π0

1 set Q∗ ⊆ 2ω which is
recursively homeomorphic to Q. 2

Corollary 4.2. There is a Π0
1 set D ⊆ 2ω such that D ≡w DNR. Put d =

degw(D) = degw(DNR).

Remark 4.3. It can be shown that 0 < d < r1 < 1.

Definition 4.4. X is 2-random if and only if it is 1-random relative to 0′, the
Turing degree of the Halting Problem. The set of 2-random reals is denoted R2.
We write r2 = degw(R2).
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Corollary 4.5. There is a Π0
1 set R′

2 ⊆ 2ω such that R′
2 ≡w R2 ∪ P , where

P = {completions of PA}. Put r′2 = inf(r2,1) = degw(R
′
2).

Proof. Relativizing Corollary 2.4 we see that R2 is a Σ0
3 subset of 2ω. Our

theorem then follows by Theorem 4.1. 2

Theorem 4.6. If X is 2-random then X is not almost recursive.

Proof. Martin 1967, unpublished, has shown that µ({X ∈ 2ω : X is not almost
recursive}) = 1. Our theorem follows from an analysis of Martin’s proof. 2

Theorem 4.7. We have 0 < r1 < r′2 < 1.

Proof. Obviously 0 < r1 ≤ r′2 ≤ 1. Theorem 2.12 implies that r′2 < 1. The fact
that r1 < r′2 follows from Corollaries 3.4 and 3.7 and Theorem 4.6. 2

5 Embedding the R. E. Degrees

We now use the Σ0
3 → Π0

1 Theorem to embed the upper semilattice of Turing
degrees of recursively enumerable subsets of ω into the lattice of Muchnik degrees
of nonempty Π0

1 subsets of 2ω.

Theorem 5.1. Let A ∈ 2ω be ∆0
2, i.e., A ≤T 0′. Then there is a Π0

1 set

PA ⊆ 2ω such that PA ≡w P ∪ {A}, where P = {completions of PA}. We have

PA⊕B ≡w PA × PB .

Proof. The first statement follows from Theorem 4.1 since {A} is Π0
2. The

second statement is straightforward. 2

Theorem 5.2 (Arslanov Completeness Criterion). Let A ⊆ ω be recur-

sively enumerable. If f ∈ DNR and f ≤T A, then A is Turing complete, i.e.,

degT (A) = 0′.

Proof. See Soare’s book, Section V.5. 2

Theorem 5.3. Let A,B ⊆ ω be recursively enumerable. Then A ≤T B if and

only if PA ≤w PB.

Proof. We identify A,B ⊆ ω with their characteristic functions χA, χB ∈ 2ω.
Obviously A ≤T B implies PA ≤w PB. For the converse, recall that P is
Medvedev complete, hence DNR2 ≤s P . Thus for all X ∈ P there is a DNR
function f ≤T X . Assume now that PA ≤w PB. In particular we can find
X ∈ P ∪{A} such that X ≤T B. If X ∈ P , then by the Arslanov Completeness
Criterion, B is Turing complete, hence A ≤T B. If X /∈ P , then X = A, hence
again A ≤T B. 2

Remark 5.4. Thus our embedding of the r. e. Turing degrees into the Muchnik
lattice is given by degT (A) 7→ degw(P ∪ {A}), where P = {completions of PA}.
This embedding is order preserving and least upper bound preserving, carries 0
to 0, and carries 0′ to 1.
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6 Priority Arguments
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